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The spray drying process is considered a conventional method to convert liquids to powders with some
but at an acceptable level of degradation and oxidation of volatile compounds. Spray drying is based on
the preparation, homogenization, atomization, dispersion and subsequently dehydration of the solution.
Wall deposition is a key processing problem in the spray dryer particles that indirectly affects the quality
and quantity of the product. The degree of wall deposition is affected by several factors including oper-
ating parameters, type and size of spray dryer and the spray dryer wall properties. The development of
wall depositions in the spray dryer deteriorates the yield of the products and hence increases the costs of
manufacturing and maintenance. And constructive models are very resourceful in understanding the
mechanism of wall deposition which will result in direct economic benefits to the food industry. The
aim of this review is to give a physical and chemical description of the wall deposition mechanism
and introduce the classified models to simulate and visualize this behavior in spray dryers.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Spray drying is a process that transforms feedstock from a fluid
state to a dried particle form by spraying the feed into a hot drying
medium (Masters, 1994). The feeding can either be in solution,
suspension, emulsion or paste form. The properties of the dried
product depend on the physical and chemical properties of the feed
and the dryer design, and the operation. The industrial application
of the spray drying technique in the milk and detergent industries
began in the 1920s. However, Samuel Percy (Percy, 1872) was the
first person who patented it entitled ‘‘Improvements in drying and
concentrating liquid substances by atomizing’’ (Masters, 1994).
Nowadays, the application of the spray drying technique has been
expanded to various types of food production such as egg products,
beverages, vegetable proteins, fruit and vegetable extract, carbohy-
drates, tea extracts, yogurt and many other products in powder
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Fig. 1. Schematic diagrams of spray drying process.
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Fig. 2. Schematic diagrams of affecting factor on spray drying process.
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form. Some of the previous works on spray drying and the
additives used (carriers) are tabulated in Table 1.

The benefits of the spray drying technique include the ability to
produce powders of a specific particle size and moisture content,
irrespective of the dryer capacity. It is a continuous and easy oper-
ation which is fully automatically controlled with a quick response
time, and is also applicable to both heat sensitive and heat-resis-
tant materials. Essentially, the spray drying process is a continuous
drying operation which combines several stages in the process as
presented in Fig. 1 (Masters, 1994):

Each stage is carried out according to the dryer design and
operation setting, which determine the characteristics of the
dried products. The atomizing stage must create a spray for opti-
mum evaporation conditions in order to achieve an economic
production of the desired products (Masters, 1994). Spray-air
contact is determined by the position of the atomizer in relation
to the drying air inlet. In a co-current flow design, spray
evaporation is rapid and as the drying air cools, accordingly the
evaporation time is shortened. The product is not subject to heat
degradation. When the spray comes into contact with the drying
air, evaporation takes place in the droplets until the moisture
content becomes too low to diffuse through the dried droplet
surface. Finally, the recovery of dried powder is carried out either
in the cyclone, filter bag or electrostatic precipitator (Keshani,
2013).

The spray drying process is mainly affected by several param-
eters as presented in Fig. 2. Since spray drying is usually the
end-point of a process that also influences the quality of the final
product, it has attracted more attention over the last two decades.
A key processing problem in spray dryers is the wall deposition of
particles that indirectly affects the quality of the product through
the degradation of the deposited particles and the resulting pollu-
tion of the main product. Its understanding provides guidance in
the selection of the operating conditions of the spray dryers that



Table 1
Selected previous researches carried out on spray drying process.

Raw material Carriers/wall materials Type of spray dryer Inlet/outlet
temperature

References

Acai (EuterpeoleraceaeMart) Maltodextrin Mini spray dryer 138–202 �C/82–
114 �C

Tonon et al. (2008)

Lemon myrtle oil Modified starch + maltodextrin, whey
protein + maltodextrin

Pilot spray dryer 180 �C/60–70 �C Huynh et al. (2008)

Mandarin oil Gum arabic, 20 DE maltodextrin 160–200 �C/80–
100 �C

Bringas-Lantigua et al.
(2011)

Red-freshed pitaya
(Hylocereuspolyrhizus) Seed Oil

Sodium caseinate, whey protein, gum arabic Mini spray dryer 150 �C/77 �C Lim et al. (2012)

Mountain tea (Sideritisstricta) b-Cyclodextrin, maltodextrins, gum arabic Mini spray dryer 145–165 �C/75 �C Nadeem et al. (2011)
Lactose Maltodextrin Pilot scale co-current

spray dryer
140–180 �C/95 �C Keshani et al. (2012)

Sugars (sucrose, glucose, fructose) and
citric acid

Maltodextrin Anhydro lab scale spray
dryer

150 �C/65 �C Bhandari et al. (1997)

Raisin juice Maltodextrin Bench –top lab scale spray
dryer

110 �C/77 �C Papadakis et al. (2006)

Sucrose Maltodextrin -cylinder- on- cone spray
dryer

120–190 �C/95–
97.5 �C

Woo et al. (2007a)

Honey Maltodextrin/whey protein isolate Mini spray dryer 150 �C/85 �C Shi et al. (2013)
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154 S. Keshani et al. / Journal of Food Engineering 146 (2015) 152–162
will minimize wall deposition and hence help to improve the
quality of the product. A schematic diagram of the works done
on the wall deposition in a spray dryer is presented in Fig. 3.
Currently, the main challenges in the production of powders
in spray dryers are the development of the desired powder
properties and the costs. It is therefore important to identify
the optimum operating criteria and processing conditions to ensure
the preservation or enhancement of the quality of the dried
products during the spray drying processes.
2. Particle wall deposition

The main thrust of recent works is to understand the mecha-
nism of particle deposition on the surfaces of the inner walls of
the spray dryer. Large drying chambers reduce wall deposition
by setting the walls out of the range of most particle trajectories
(Masters, 1994; Oakley, 1994). A brief description of the advanta-
ges and disadvantages of wall deposition are provided in Table 2.
The affecting factors on wall deposition are as shown in Table 3.



Table 2
Advantages and disadvantages of wall deposition.

Advantages of wall deposition Disadvantages of wall deposition

Product quality
� Sufficient moisture evaporation
� Using drying agents for improving powder

hygroscopicity
� Decrease stickness temperature

� Variable quality, influence of room temperature
� Lead to a buildup of large amounts of product on the dryer

Desired powder properties
� Small particle size
� Low bulk density

� Occurred at high temperature because temperature of deposition particle is above Tg and sticky point
temperature

Preservation
� Enhancement of quality of dried product

� Affected on internal gas flow patterns

Low cost � Stop dryer and removal of wall deposition
Safety fire hazard � Spray drying is not operated properly

� Dangerous when wall deposition feels cause damage to containers
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The properties of the wall of the dryer in which deposition
occurs also play a significant role in the mechanism of product
deposition. It is well known that the adhesion of liquids onto walls
depends on the wall properties (Bhandari and Howes, 2005).
Recent experimental works by Kota and Langrish (2006), showed
that nylon exhibited a lesser deposition rate due to the non-sticky
nature of the nylon compared to stainless steel. They showed that
less stickiness may lead to more bouncing or sliding on the nylon
and therefore appeared less adhesive compared with the stainless
steel. Further work by Woo et al. (2009a,b) showed that different
wall materials affect the deposition rate of rubbery particles
significantly. A Teflon surface with less surface energy has a less
deposition flux compared to a stainless steel surface that has a
higher surface energy. A higher wall temperature also increases
the deposition flux (Woo et al., 2007b). Adhikari and co-workers
(2007) showed that Teflon is generally less ‘‘sticky’’ when
compared to stainless steel (S-S) by using an in-situ tack method
for relatively large droplets.

One of the factors that influence the quality of the product and
wall deposition is the chamber geometries or spray dryer types.
The chamber geometry directly changes the air flow pattern and
consequently influences the behavior and flow pattern of the par-
ticle within the dryer (Huang et al., 2003b). Several researchers
have studied other possible chamber geometries such as pure
conical, lantern and hour-glass geometry (Huang et al., 2003a,b),
horizontal configuration (Huang and Mujumdar, 2006) and para-
bolic geometry(Keshani et al., 2014), as the spray drying chamber.
It should be noted that not only the cylinder geometry but the
duration of the particle residence in the drying chamber as well
as overall chamber volume can impact drying performance. A work
by Huang and Mujumdar incorporated a horizontal spray dryer to
study wall depositions. They reported that the deposit on the bot-
tom part of spray dryer is significant even in the presence of the
fluid bed. This is due to the air flow that passes at low velocity
through the small opening.

Swirling flow patterns in a spray dryer can be typically classi-
fied into two types: inlet vane (or direction) induced swirls and
atomizer-induced swirls. Many experimental measurements and
observations have been undertaken for inlet-induced swirls. This
is coupled with detailed numerical studies which highlighted the
unsteady and oscillatory behavior of such flows (Langrish et al.,
2004; Lebarbier et al., 2001). A work by Langrish et al. (2004) stud-
ied the effects of change in flow features that was observed at three
inlet swirl angles of no swirl, 15� and 25�. A high inlet swirl angle
would occur due to this flow behavior, but as seen in the velocity
contour map, the chances of wall deposition are greater here than
with no swirls, due to the larger velocities at the walls. Previous
experimental data (Ozmen and Langrish, 2003; Southwell and
Langrish, 2001) indicated that the wall deposition was minimized
for no swirl, but that evaporation was still adequate.
Several authors have attributed product deposition in spray
dryers to product stickiness. Particles deposit on the wall by stick-
ing to it, which is due to the sticky particle which occurs above the
glass transition temperature, Tg (Roos, 2009; Shrestha et al., 2008).
Spray drying produces dry amorphous powders that are thermo-
plastic due to heating or exposure to high humidity, resulting in
water sorption and thermal plasticization of the particle surfaces
(Roos and Karel, 1991). At temperatures above Tg, amorphous
structures are in a rubbery state where the polymer molecules
become softer and more flexible because of greater molecular
mobility. The temperature of the surface of the product such as
amorphous sugar should not reach more than 10–20 �C above Tg
during spray drying to avoid substantial product stickiness, espe-
cially in low molecular weight carbohydrates (Aguilera and
Lillford, 2007; Bhandari et al., 1997; Roos and Karel, 1991; Woo
et al., 2009a). This is due to the greater molecular mobility of the
amorphous components in a highly viscous flow between the par-
ticle surfaces, making the powder more cohesive (Aguilera and
Lillford, 2007). At temperatures below Tg, the amorphous parts of
the materials are in a glassy state where the polymer molecules
have no segmental motion but vibrate slightly (Brennan et al.,
1971). Ozmen and Langrish (2003) observed that when the wall
deposition temperature is below the sticky point temperature,
there is less wall deposition. When the feed flow rate increases, lar-
ger droplets are formed and the evaporation rate is lower. This is
caused by the larger amounts of water introduced into the dryer.
Moreover, increasing the feed flow rate results in higher residual
moisture content. There was a corresponding visual increase in
deposits on the wall of the drying chamber. The deposition in this
case is high because of the higher feed flow rate. Ozmen and
Langrish (2003) observed that the rate of adhesion of milk powder
to the walls was different from the rate of cohesion of milk parti-
cles to other particles on the walls. This means that the rate of
adhesion of the first layer was different compared to that of other
layers when particles cohere to the adhered particles. Chegini and
Ghobadian reported that at a constant air inlet temperature,
increasing the feed flow rate increased the wall deposition
(Chegini and Ghobadian, 2007). When more feed was atomized
into the chamber, the residence time of the particles was shorter
and the drying time was reduced, resulting in wetter particles. In
this condition, the particles were more cohesive which caused
the deposition rate to increase and the yield to decrease. The work
by Keshani et al. (2012) reported that the effect of additive as a
drying aid is more significant in reducing the deposition fluxes.
The additives added to the sugar-rich feed, increased its molecular
weight and hence its glass transition temperature Tg, which conse-
quently reduced the particle stickiness and wall deposition in the
spray drying (Adhikari et al., 2004; Roos and Karel, 1991). The work
by Adhikari et al. (2009a,b) studied on application of proteins (WPI
and sodium caseinate) on minimizing the stickiness of sugar-rich



Table 3
Affecting factors on wall deposition.

Factors Advantages/disadvantages References

Process based
factors

Wall properties
material (wall
surface energy)

S-S � Low cost
� High wall deposition

Bhandari and Howes (2005), Keshani et al. (2012), Woo et al.
(2009a,b)

Teflon � Low wall deposition
� High cost

Keshani et al. (2013), Woo et al. (2009a,b)

Nylon � Less wall deposition Kota and Langrish (2006)
Spray dryer types Conical � High wall deposition Keshani et al. (2012, 2013)

Parabolic � Less wall deposition Keshani et al. (2014)
Horizontal � Flow pattern is not optimal for spray

drying since the main air inlet is
located at a corner of the chamber

Cakaloz et al. (1997), Huang and Mujumdar (2006)

Inlet swirl angles No swirl � Less deposition Langrish et al. (2004), Ozmen and Langrish (2003), Southwell and
Langrish (2001)

High swirl � High wall deposition Huang and Mujumdar (2006) [20]
Operating
parameters

Inlet
temperature

� Low product moisture
� High wall deposition
� Less deposition below sticky point

temperature

Keshani et al. (2012), Woo et al. (2007a, 2010c))

Feed rate � Low evaporation rate
� Reduce during time
� Short residence Time
� Rubbery wall deposition
� Dripping wall deposition
� Product moisture high
� High wall deposition
� Less yield

Chegini and Ghobadian (2007), Jumah et al. (2000), Keshani et al.
(2012), Masters (1994)

Material based
factors

Material Additive � Reduce deposition rate
� Increase moisture content
� Increase molecular weight
� Increase Tg
� Reduce thermoplasticity/

hygroscopicity
� Segregate the droplets during spray

drying and form a skin

Adhikari et al. (2004), Bhandari et al. (1997), Brennan et al. (1971),
Goula and Adamopoulos (2010), Keshani et al. (2012), Kim et al.
(2003), Meerdink and van’t Riet (1995), Papadakis et al. (2006),
Roos (2009), Roos and Karel (1991), Roustapour et al. (2006),
Wang and Langrish (2009)

Fat content � Relatively high wall deposition Keshani et al. (2013) Paterson et al. (2007)
Protein
content

� Less wall deposition Keshani et al. (2013), Kota and Langrish (2006), Langrish et al.
(2007)

Carbohydrate
content

� High deposition Keshani et al. (2012)
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foods using surface active proteins and the effect of a small amount
of low molecular surfactants (LMS) in preventing the surface
migration of proteins (and producing non-sticky film). They found
that in the absence of LMS, the proteins increased the powder
recovery due to the formation of a glassy protein-rich film and
the reduction of surface stickiness of sucrose droplets. However,
in the presence of LMS recovery, dropped significantly.
Jayasundera et al. (2010) investigated the effect of low-molecu-
lar-weight surfactants and sodium caseinate on spray drying of
sugar-rich foods. Later on, Jayasundera et al. (2011a,b) studied
the effect of protein types and low molecular weight surfactants
on spray drying of sugar-rich foods using sucrose as a model sugar
and sodium caseinate and pea protein isolate (PPI) as model pro-
teins. They reported that the amount of protein required for suc-
cessful spray drying of sucrose–protein solutions depends on the
amount of proteins present on the droplet surface but not on the
bulk concentration. Stickiness is also due to the hygroscopicity of
non-crystalline sugars (Roos, 2009) and their thermoplasticity
(Brennan et al., 1971). Maltodextrin as a drying aid is added to pro-
duce a powder product by reducing the thermoplasticity and
hygroscopicity as well as the stickiness and product deposition.
The particle stickiness on the wall is due to the molecular mobility
of the amorphous powders as a highly viscous surface layer that
produced more powders that are cohesive. Several researchers
(Bhandari et al., 1997; Kim et al., 2003; Meerdink and van’t Riet,
1995; Wang and Langrish, 2009) have observed that there is strong
evidence that additives segregate to the surface of the droplets
during spray drying and form a skin with a higher Tg around the
droplets. Kieviet noted that wall deposition affected the residence
time distribution of the particles, and particularly that an impor-
tant factor in determining residence times with high wall deposi-
tion rates was the time taken by the particles to slide down the
conical wall of a spray dryer(Kieviet et al., 1997). The sticking of
particles to the walls and to each other, and the sliding of wall
deposits are therefore important issues.

The presence of lactose and protein on the surface could have
made the particle surface more rigid due to the high glass transi-
tion point (Woo et al., 2008). On the other hand, another possibility
is that the presence of lactose and protein could have made the
particle surface more hydrophilic. The work by Keshani et al.
reported that the presence of a high proportion of protein on the
surface, however, led to significant reduction in the adhesion rate
at the cone of the spray dryer (Keshani et al., 2013). Although a
higher proportion of fat is expected on the surface of whey protein,
the protein is dominant in making the surface hydrophobic. A sim-
ilar trend observed for full cream milk particle is more distinct
than for whey protein particle. Whey protein powder was shown
to be very hydrophobic when compared with skim milk which also
contains some proportion of protein (which could contain both
whey and casein) on the surface; resisting wetting by water
(Gaiani et al., 2009; Kim et al., 2002). In whey protein particles,
the deposition reduction is more significant in the adhesion rate
at the bottom plate. The whey protein particles exhibited a sudden
decrease in cohesion rate when compared to the initial adhesion
rate. The effect of fat content on wall deposition and caking
properties of powder and its mechanism is different from



Fig. 4. Schematic representation of a multilayer perceptron feed-forward network.

Fig. 5. Typical glass transition and approximated sticky point curve for lactose
(Woo et al. 2010a).
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carbohydrates (Foster et al., 2005; Paterson et al., 2007). The usage
of a lower chamber wall surface energy reduces the adhesion rate
of the particles. This reduction is more significant for the more
hydrophobic whey particles compared to the fat containing parti-
cle surfaces.

Many researchers have found that some deposition flux curves
closely resemble linear lines rather than significantly curved non-
linear lines (Keshani et al., 2012; Kota and Langrish, 2006; Woo
et al., 2007a). They attributed this behavior to the small differences
between the adhesion and cohesion rates of the particles. It is also
well known in the mechanism of product deposition that the adhe-
sion of liquids onto walls depends on properties of the dryer walls
(Bhandari and Howes, 2005). Accordingly, Ozmen and Langrish
(2003) observed that the rate of adhesion of milk powder to the
walls was different from the cohesion of milk particles to other
particles on the walls. This means that the rate of adhesion of
the first layer might be different compared to that of other layers
when particles cohere to the adhered particles.
3. Modeling

Artificial neural network (ANN) is a valuable instrument in the
design and optimization of processes. A properly trained ANN links
input and output parameters without the need for fundamental
models. ANN does not require prior knowledge about the structure
and relation-ships that exist between variables and this is useful in
where the complexity of the mechanisms is high. But unlike the
fundamental models it is lack of physical concept. Computational
fluid dynamics (CFD), is a branch of fluid mechanics that uses
numerical methods and algorithms to solve and analyze problems
that involve fluid flows.

3.1. Application of artificial neural networks (ANN) in spray drying
process

Artificial neural network (ANN) is a mathematical or computa-
tional model that simulates the biology of the human brain. The
ANN predicts values of unmeasured goal parameters using the
correlation between measured parameters and the target parame-
ters. The ANN models have been successfully used in the prediction
of problems in bio-processing and chemical engineering
(Movagharnejad and Nikzad, 2007; Nourouzi et al., 2012).

A typical ANN system has three layers of neurons: input layer,
one hidden layer and an output layer. Each layer has its corre-
sponding units (neurons or nodes) and weighted connections.
The connections can be feed-forward or feedback. Each unit
receives the sum of its weighted inputs and passes the results
through a nonlinear activation function (transfer function) such
as the sigmoid (logistic) function. The activation function acts on
the weighted sum of the unit’s inputs. The outputs feed through
the network to optimize the weights between the units. The opti-
mum point is found by minimizing the error during the training or
learning phase where the learning of the mathematical relation-
ship between input variables and corresponding outputs occurs.
The ANN changes the value of the weighted links to reduce the dif-
ference between the predicted and target (observed) values. This
process is repeated across many training cycles (iteration or epoch)
until a specified level of accuracy is obtained. The scheme of feed-
forward multilayer perceptron network is shown in Fig. 4
(Rosenblatt, 1958).

In the field of drying, the ANN is a better alternative to conven-
tional empirical and semi-empirical modeling based on polynomial
and linear regressions especially for problems involving many
parameters such as spray drying. The ANN models have been
developed and tested for the drying of various materials. Hussain
and Rahman developed a model consisting of a hybrid ANN that
included a polynomial regression model and a standard ANN for
the prediction of porosity in eleven types of fruits and vegetables
during drying (Hussain et al., 2002). Other researchers developed
ANN models for the modeling of drying of potato slices (Islam
et al., 2003); ginseng (Martynenko and Yang, 2006), carrots
(Cubillos and Reyes, 2003), tomatoes (Movagharnejad and
Nikzad, 2007), grains (Farkas et al., 2000); Echinacea angustifolia
(Erenturk et al., 2004) and apples (freeze drying) (Menlik et al.,
2010). The ANN has been used in the prediction of thermal proper-
ties such as the thermal conductivity of food as a function of tem-
perature, moisture content and apparent porosity (Sablani and
Rahman, 2003), heat and mass transfer coefficients of cassava
and mango (Hernández-Pérez et al., 2004), and the physical prop-
erty changes of dried carrots as a function of fractal dimension and
moisture content (Kerdpiboon et al., 2006). ANN are also effective
for optimization, modeling, and process control (Erenturk and
Erenturk, 2007; Koc et al., 2007; Zhang et al., 2002). Keshani and
team carried out a work on the optimization and modeling of lac-
tose powder wall deposition rate in spray dryers (Keshani et al.,
2012). The ANN is able to predict the optimal parameters of rough
rice drying (Zhang et al., 2002) and the process and quality param-
eters of spray-dried orange and pomegranate juice (Chegini et al.,
2008; Youssefi et al., 2009).

3.2. Mathematical deposition model

The mathematical model of particle deposition is an important
step in developing and validating spray drying. Wall particle depo-
sitions can recycle into the chamber, making the deposition



Key advantages of 
CFD methods in 
Industrial Drying

Predict local conditions of gas, particle/droplet 
in drying chamber 

Draw comparison of different feed point 
layouts such as multiple entry points

Give information on dispersion of particles as 
they leave the feed point region

Use as powerful tools for trouble shooting 
purposes including varying chamber geometry 

and operating parameters

Fig. 6. Schematic diagrams of key advantages of CFD methods.

Table 4
CFD modeling of a spray dryer.

No. Dimension Code Objects References

1 2D/3D FLUENT 2D model is suitable for fast and low-resource consumption; numerical calculations with reasonable
accuracy

Mezhericher et al. (2009)

2 3D FLUENT 3D CFD models are presented in terms of the velocity magnitudes, velocity components, temperature
profiles and particle trajectories with rotating disc spray dryers

Huang et al. (2004a)

3 2D FLUENT The transient simulations with droplet–droplet interactions showed that insulation of the spray dryer
substantially affects the patterns of temperature and vapor mass fraction, whereas the influence on
velocity flow fields is less considerable

Mezhericher et al. (2008)

4 2D FLUENT REA model was applied in a CFD simulation of an industrial scale dryer providing quite good prediction
on the outlet particle moisture

Jin and Chen (2009a)

5 3D FLUENT Gas/particle interaction plays an important role in modern spray dryers and may have influences on
wall deposition, agglomeration and powder degradation. The gas/particle interactions in this large dryer
are studied using numerical results

Jin and Chen (2009b)

6 3D FLUENT A new deposition model is developed and implemented in the CFD software Jin and Chen (2010)
7 3D STAR-

CD
Drying model is incorporated into the CFD calculations Lo (2005)

8 3D FLUENT The effect of chamber diameter and operating conditions on flow stability without the inclusion of
droplet injection are investigated

Woo et al. (2009b)

9 3D FLUENT A new empirical drying model is developed in CFD simulations Ullum et al. (2010)
10 2D/3D FLUENT CFD simulations performed for a continuous phase to predict the hydrodynamics of drying air, flow path

and velocity vectors
Wawrzyniak et al. (2012)

11 2D - The developed drying model, DrySim is very suitable to make low cost calculations for the food industry Straatsma et al. (1999)
12 3D FLUENT A CFD model is used to simulate momentum, heat and mass transfers between the discrete phase of

droplets and the continuous gas phase
Huang et al. (2005))

13 3D FLUENT A CFD simulation is carried out to compare the gas flow and temperature patterns as well as particle
trajectories in different chamber geometries

Huang et al. (2003b)

14 3D FLUENT Simulation of the temperature and moisture content of a single milk particle as a function of its
residence time in the spray drier and the drying mechanism

Birchal et al. (2006)

15 2D FLOW3D CFD simulations of gas turbulence and validation results Oakley (1994)
16 3D CFX5 CFD simulation of the effects on inlet swirl on gas flow patterns Langrish et al. (2004)
17 3D CFX4.3 A CFD simulation is performed with a tall form spray dryer to examine the characteristics of the flows

that exist within these complex devices
Harvie et al. (2002)

18 3D CFX4.3 A numerical investigation of the gas flow patterns existing inside a pilot-scale tall-form counter current
dryer is made

Harvie et al. (2001)

19 2D FLUENT CFD simulation is carried out for predicting the gas flow pattern, gas temperature and humidity
distribution, and heat and mass transfer characteristics of a pulsating flow spray-drying chamber

Wu and Mujumdar (2006)

20 2D FLUENT A CFD simulation is carried out to investigate airflow pattern, temperature and humidity profile at
different levels in the drying chamber

Huang et al. (2003a)

21 2D FLUENT CFD simulation of the effects of low humidity and temperature on the gas flow patterns, droplet
trajectories and overall dryer performance

Huang and Mujumdar
(2007a)

22 3D FLUENT A CFD model is carried out to predict the gas flow field, gas temperature, gas water content, particle
paths and evaporation from wet particles

Ullum (2006)

23 3D FLUENT CFD study is carried out to investigate the possibility of multi-functional applications for a specific spray
dryer chamber

Huang et al. (2006)

24 2D – Gas flow behavior in a co-current spray dryer is investigated Sano (1993)
25 2D FLUENT CFD simulation of the spray drying process in a two-stage horizontal chamber is investigated Huang and Mujumdar (2006)
26 3D CFX The comparison of the predictions of two different turbulence simulation approaches SST and SAS

models, for the simulation of the gas flow
Fletcher and Langrish (2009)

27 3D CFX4.4 The extent to which water droplets spread out in the drying chamber is affected by the amount of swirl
in the inlet air

Guo et al. (2003)

28 2D FLUENT CFD simulation of the effects of low inlet air humidity and temperature on the gas flow patterns, droplet
trajectories and overall dryer performance are investigated

Huang and Mujumdar
(2007b)

29 3D FLOW3D The modeling of the air flow pattern and temperature are investigated Kieviet and Kerkhof (1995),
Kieviet et al. (1997)
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Table 5
CFD applications in wall deposition.

CFD application in wall deposition References

The numerical simulation is investigated with regards to the changes in wall
deposition rate

Langrish and Zbicinski (1994))

The wall deposition is predicted using superheated steam instead of air in the spray
dryer

Frydman et al. (1998, 1999)

The developments in understanding in the assessment of spray dryers, focussing on
wall deposition problem

Langrish and Fletcher (2003)

The developments in predicting Flow patterns in a spray dryer Cakaloz et al. (1997), Guo et al. (2003), Harvie et al. (2001), Langrish (2007),
Langrish and Fletcher (2001); Langrish et al. (2004), Lebarbier et al. (2001),
Southwell and Langrish (2000, 2001)

In the CFD model, the counter-current spray drying processes are identified, i.e., the
regions of particle agglomeration and wall deposition in spray drying

Zbicinski and Zietara (2004)

The CFD simulation is investigated to reduce the wall deposition rate and thermal
degradation for particles by modifying the air inlet geometry

Langrish (2007)

The CFD simulation of a spray dryer based on mathematical modeling and
experimental trials for predicting and measuring the wall deposition

Langrish and Zbicinski (1994), Sadripour et al. (2012)

The effects of turbulence and droplet size in a relatively simple geometrical
configuration, with the aim being to assess the ability of a CFD simulation to
predict the actual wall deposition fluxes and the trends in these fluxes in such
geometry

Langrish and Kota (2007)

A study of the precession of the central jet of air inside spray dryer, where this
central jet may be connected to the occurrence of wall deposits inside this
equipment

Lebarbier et al. (2001)

The predictions of deposition patterns using CFD simulations based on transient-
flow behavior

Kota and Langrish (2007a)

The particle deposition behavior in a conical section of the spray dryer is predicted
using simple correlations for particle depositions in pips

Kota and Langrish (2007b)

The different levels and scales of mathematical modeling are applied to spray
dryers. These scales ranged from the whole dryer level (coarsest scale), through
plug-flow reactor approximations, to the finest scale, computational fluid
dynamics (CFD)

Langrish (2009)

The mathematical model of particle deposition is developed and implemented in
the CFD software

Jin and Chen (2010)
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phenomenon even more complicated. Cleaver and Yates studied
recycling particle and deposition rates (Cleaver and Yates, 1976).
They showed that wall shear stress is a key parameter of particle
recycling. The deposition varies linearly with time because it is
below a critical value, and the deposited particles can re-enter
the dryer. The measurement of the critical wall shear stress is a
helpful experiment in physicochemical problems such as re-depo-
sition where the dynamic force of adhesion controls the phenom-
ena (Cleaver and Yates, 1976).

The wall deposition model determines the destiny of the parti-
cles, when they are tracked and reach the wall. A suitable wall
deposition model will affect the prediction of both the yield and
then final product moisture. Several researchers (Huang et al.,
2004b; Langrish and Zbicinski, 1994; Mezhericher et al., 2008)
have utilized the stick-on-contact approach as reported in litera-
ture. In theory, it is assumed that a number of particles will touch
the boundary wall; these will adhere and will be removed from the
simulation. One major drawback of the stick-on-contact deposition
model based on the glass transition temperature Tg, is its over-pre-
diction of deposition rates. This is due to neglecting the effects of
particle rigidity and velocity as well as the angle of the collision
(Woo et al., 2010a). The work by Bhandari and his co-workers indi-
cated that increasing the rigidity of the particles increases the yield
from the spray drying process (Adhikari et al., 2005; Bhandari et al.,
1997). Ozman & Langrish investigated this effect in a pilot scale
spray dryer unit and developed a deposition model based on the
Glass Transition – Sticky Point concept. Fig. 5 shows the typical
glass transition curve of lactose as predicted by the Gordon–Taylor
correlation (Ozmen and Langrish, 2003). From Fig. 5, the glass tran-
sition temperature and the corresponding sticky point temperature
are the critical function of the particle moisture. At higher moisture
contents, the sticky point declines and vice versa. If the particle
temperature exceeds the sticky point, the particle becomes sticky
and will adhere to the walls. It is included that the sticky point
of the material is taken as the cut-off point in determining whether
or not a particle sticks to the wall. With application to amorphous
carbohydrates, it is common to take the sticky point as 20–25 �C
higher than the glass transition point (Woo et al., 2010b). Aside
from product stickiness and Tg, a new deposition mechanism is
proposed based on the collision of viscoelastic amorphous food
particles with the wall (Woo et al., 2010a). Murti et al. applied par-
ticle gun experiments and showed that the velocity and angle of
the striking particle affect the deposition of skim milk powders
(Murti et al., 2006). A higher striking velocity causes a higher
critical T–Tg value, which leads to a lower tendency to adhere. In
addition, it was also found that at a lower the critical T–Tg value,
a smaller striking angle reduces the dependency of the particle
stickiness on temperature. Therefore, the particle impacting
momentum does affect the deposition outcome. In order to address
these aspects of the deposition modeling, a recent work involved
the development of a rheology based deposition model (Woo
et al., 2010a). The premise of this model is based on the viscoelastic
property of the amorphous particles often encountered in spray
drying (Palzer, 2005). The effect of velocity, particle size and parti-
cle rigidity on particle deposition can be determined by using time
the temperature superposition technique. Case studies of past data
showed good qualitative agreement with the model that warrants
further work in the future (Woo et al., 2010a).
4. CFD applications in wall deposition of spray drying system

The CFD techniques used to study and solve complex engineer-
ing applications includes fluid flow and heat and mass transfer
problems. There are some key advantages that CFD methods can
offer to the drying industry as presented in Fig. 6. Table 4 summa-
rizes the CFD modeling of the spray dryer from 1993 to 2012.



160 S. Keshani et al. / Journal of Food Engineering 146 (2015) 152–162
A key issue in wall deposition for spray dryers is particle stick-
iness, since this has an important bearing on whether or not the
particles that hit the walls stay there and for how long. The colli-
sion flux of particles with the wall is a function of the fluid flow
patterns in the dryers, and CFD can offer guidance in this area
(Langrish, 2005). The application of CFD simulations and experi-
mental work in the study of wall deposition help to understand
the spray pattern and process parameters which control the feed
water composition and flow rate, the hot air temperature and flow
rate and the droplet size from the atomizer (Langrish and Fletcher,
2001; Masters, 1994; Schuck et al., 2005). However, the flow pat-
terns of both gas and particles (droplets and dry particles) inside
the spray dryer and the mechanism of particle deposition on the
walls are highly complex, which makes the understanding of the
underlying processes difficult. An accurate prediction of wall depo-
sition for droplets depends on having sufficient resolution of the
near-wall turbulent behavior of the flow. Matida et al. suggest that
optimizing the parameters in the RANS equations to give accurate
near-wall turbulence statistics for the primary flow may improve
this situation for wall deposition, without significantly affecting
the prediction of the bulk flows (Matida et al., 2000). From an oper-
ational point of view, operating the spray dryer within a narrow
optimum range of operating parameters, which must be deter-
mined empirically for each spray dryers, can avoid wet products
and significant product deposition on the walls (Woo et al.,
2007b). In the following sections, the applications of CFD in wall
depositions are tabulated in Table 5.

5. Conclusion

The significant impact of wall deposition and the complexity of
its underlying mechanisms have resulted in a considerable number
of research works, either experimental or theoretical. This review
addresses various aspects of wall deposition such as the applica-
tion of CFD, ANN based techniques and several mathematical
models. After conducting this research it is clear that wall deposi-
tion modeling has been developed as a tool to evaluate the
experimental results and to reach the reliable conclusions. Further-
more, the effects of various parameters such as primary conditions
(inlet–outlet temperature, air flow rate, feed rate, feed concentra-
tion and wall material, air flow pattern in chamber geometry, type
and size of spray dryer and spray dryer wall properties on wall
deposition were presented and discussed.
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